Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Biol Macromol ; 230: 123191, 2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2179329

ABSTRACT

Viral mRNA of coronavirus translates in an eIF4E-dependent manner, and the phosphorylation of eIF4E can modulate this process, but the role of p-eIF4E in coronavirus infection is not yet entirely evident. p-eIF4E favors the translation of selected mRNAs, specifically the mRNAs that encode proteins associated with cell proliferation, inflammation, the extracellular matrix, and tumor formation and metastasis. In the present work, two rounds of TMT relative quantitative proteomics were used to screen 77 cellular factors that are upregulated upon infection by coronavirus PEDV and are potentially susceptible to a high level of p-eIF4E. PEDV infection increased the translation level of ribosomal protein lateral stalk subunit RPLp2 (but not subunit RPLp0/1) in a p-eIF4E-dependent manner. The bicistronic dual-reporter assay and polysome profile showed that RPLp2 is essential for translating the viral mRNA of PEDV. RNA binding protein and immunoprecipitation assay showed that RPLp2 interacted with PEDV 5'UTR via association with eIF4E. Moreover, the cap pull-down assay showed that the viral nucleocapsid protein is recruited in m7GTP-precipitated complexes with the assistance of RPLp2. The heterogeneous ribosomes, which are different in composition, regulate the selective translation of specific mRNAs. Our study proves that viral mRNA and protein utilize translation factors and heterogeneous ribosomes for preferential translation initiation. This previously uncharacterized process may be involved in the selective translation of coronavirus.


Subject(s)
Coronavirus Infections , Coronavirus , Humans , Eukaryotic Initiation Factor-4E/metabolism , Protein Biosynthesis , Coronavirus/genetics , Proteomics , RNA, Messenger/genetics , RNA, Messenger/metabolism
2.
EMBO J ; 40(11): e102277, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1194823

ABSTRACT

The ongoing outbreak of severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) demonstrates the continuous threat of emerging coronaviruses (CoVs) to public health. SARS-CoV-2 and SARS-CoV share an otherwise non-conserved part of non-structural protein 3 (Nsp3), therefore named as "SARS-unique domain" (SUD). We previously found a yeast-2-hybrid screen interaction of the SARS-CoV SUD with human poly(A)-binding protein (PABP)-interacting protein 1 (Paip1), a stimulator of protein translation. Here, we validate SARS-CoV SUD:Paip1 interaction by size-exclusion chromatography, split-yellow fluorescent protein, and co-immunoprecipitation assays, and confirm such interaction also between the corresponding domain of SARS-CoV-2 and Paip1. The three-dimensional structure of the N-terminal domain of SARS-CoV SUD ("macrodomain II", Mac2) in complex with the middle domain of Paip1, determined by X-ray crystallography and small-angle X-ray scattering, provides insights into the structural determinants of the complex formation. In cellulo, SUD enhances synthesis of viral but not host proteins via binding to Paip1 in pBAC-SARS-CoV replicon-transfected cells. We propose a possible mechanism for stimulation of viral translation by the SUD of SARS-CoV and SARS-CoV-2.


Subject(s)
Coronavirus Papain-Like Proteases/metabolism , Gene Expression Regulation, Viral , Peptide Initiation Factors/metabolism , RNA-Binding Proteins/metabolism , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/physiology , Severe acute respiratory syndrome-related coronavirus/physiology , Viral Nonstructural Proteins/metabolism , Amino Acid Sequence , Bacterial Proteins , Chromatography, Gel , Coronavirus Papain-Like Proteases/chemistry , Crystallography, X-Ray , Genes, Reporter , HEK293 Cells , Humans , Immunoprecipitation , Luminescent Proteins , Models, Molecular , Peptide Initiation Factors/chemistry , Protein Binding , Protein Biosynthesis , Protein Conformation , Protein Domains , Protein Interaction Mapping , RNA, Viral/genetics , RNA-Binding Proteins/chemistry , RNA-Dependent RNA Polymerase/chemistry , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Ribosome Subunits/metabolism , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2/genetics , Scattering, Small Angle , Sequence Alignment , Sequence Homology, Amino Acid , Viral Nonstructural Proteins/chemistry , X-Ray Diffraction
3.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Article in English | MEDLINE | ID: covidwho-1042832

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a beta-CoV that recently emerged as a human pathogen and is the causative agent of the COVID-19 pandemic. A molecular framework of how the virus manipulates host cellular machinery to facilitate infection remains unclear. Here, we focus on SARS-CoV-2 NSP1, which is proposed to be a virulence factor that inhibits protein synthesis by directly binding the human ribosome. We demonstrate biochemically that NSP1 inhibits translation of model human and SARS-CoV-2 messenger RNAs (mRNAs). NSP1 specifically binds to the small (40S) ribosomal subunit, which is required for translation inhibition. Using single-molecule fluorescence assays to monitor NSP1-40S subunit binding in real time, we determine that eukaryotic translation initiation factors (eIFs) allosterically modulate the interaction of NSP1 with ribosomal preinitiation complexes in the absence of mRNA. We further elucidate that NSP1 competes with RNA segments downstream of the start codon to bind the 40S subunit and that the protein is unable to associate rapidly with 80S ribosomes assembled on an mRNA. Collectively, our findings support a model where NSP1 proteins from viruses in at least two subgenera of beta-CoVs associate with the open head conformation of the 40S subunit to inhibit an early step of translation, by preventing accommodation of mRNA within the entry channel.


Subject(s)
COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , RNA, Messenger/metabolism , Ribosomes/metabolism , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism , Eukaryotic Initiation Factors/metabolism , Humans , Pandemics , Peptide Chain Initiation, Translational/genetics , Protein Biosynthesis , Protein Processing, Post-Translational , RNA, Messenger/genetics , RNA, Viral/genetics , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Ribosome Subunits, Small, Eukaryotic/metabolism , Ribosomes/genetics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Viral Nonstructural Proteins/genetics
4.
Gene Rep ; 22: 101012, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1002539

ABSTRACT

Recently an outbreak that emerged in Wuhan, China in December 2019, spread to the whole world in a short time and killed >1,410,000 people. It was determined that a new type of beta coronavirus called severe acute respiratory disease coronavirus type 2 (SARS-CoV-2) was causative agent of this outbreak and the disease caused by the virus was named as coronavirus disease 19 (COVID19). Despite the information obtained from the viral genome structure, many aspects of the virus-host interactions during infection is still unknown. In this study we aimed to identify SARS-CoV-2 encoded microRNAs and their cellular targets. We applied a computational method to predict miRNAs encoded by SARS-CoV-2 along with their putative targets in humans. Targets of predicted miRNAs were clustered into groups based on their biological processes, molecular function, and cellular compartments using GO and PANTHER. By using KEGG pathway enrichment analysis top pathways were identified. Finally, we have constructed an integrative pathway network analysis with target genes. We identified 40 SARS-CoV-2 miRNAs and their regulated targets. Our analysis showed that targeted genes including NFKB1, NFKBIE, JAK1-2, STAT3-4, STAT5B, STAT6, SOCS1-6, IL2, IL8, IL10, IL17, TGFBR1-2, SMAD2-4, HDAC1-6 and JARID1A-C, JARID2 play important roles in NFKB, JAK/STAT and TGFB signaling pathways as well as cells' epigenetic regulation pathways. Our results may help to understand virus-host interaction and the role of viral miRNAs during SARS-CoV-2 infection. As there is no current drug and effective treatment available for COVID19, it may also help to develop new treatment strategies.

SELECTION OF CITATIONS
SEARCH DETAIL